Pinhole shifting lifetime imaging microscopy
نویسندگان
چکیده
منابع مشابه
Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy
In this study, multiphoton excitation was utilized to image normal and carious dental tissues noninvasively. Unique structures in dental tissues were identified using the available multimodality (second harmonic, autofluorescence, and fluorescence lifetime analysis) without labeling. The collagen in dentin exhibits a strong second harmonic response. Both dentin and enamel emit strong autofluore...
متن کاملImaging intracellular signaling using two-photon fluorescent lifetime imaging microscopy.
The recent development of Förster resonance energy transfer (FRET) sensors and FRET imaging techniques permits visualization of the dynamics of intracellular signaling events with high spatiotemporal resolution. In particular, fluorescence lifetime imaging in combination with two-photon laser-scanning microscopy (two-photon fluorescence lifetime imaging microscopy [2pFLIM]) is a powerful tool t...
متن کاملPerforming Enhanced Multiparameter Cell Imaging with Combined Fluorescence Lifetime Imaging Microscopy and Atomic Force Microscopy
optically encoded information about processes in live cells. Atomic force microscopy, on the other hand, provides nanometer-resolved surface topography and mechanical information, and has recently been expanded to nanometerresolved live cell mechanical property mapping. The integration of the two advanced live cell imaging techniques into one tool, with the capability to acquire simultaneous na...
متن کاملImaging beyond the Pinhole Camera
The world’s first photograph was taken by Joseph Nicphore Niépce (1775–1833) in 1826 on his country estate near Chalon-sur-Sane, France. The photo shows parts of farm buildings and some sky. Exposure time was eight hours. Niépce used a pinhole camera, known as camera obscura, and utilized pewter plates as the support medium for the photographic process. The camera obscura, the basic projection ...
متن کاملFluorescence Lifetime Imaging Microscopy (FLIM) Data Analysis with TIMP
Fluorescence Lifetime Imaging Microscopy (FLIM) allows fluorescence lifetime images of biological objects to be collected at 250 nm spatial resolution and at (sub-)nanosecond temporal resolution. Often ncomp kinetic processes underlie the observed fluorescence at all locations, but the intensity of the fluorescence associated with each process varies per-location, i.e., per-pixel imaged. Then t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Optics
سال: 2008
ISSN: 1083-3668
DOI: 10.1117/1.3027503